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R E G U L A R  R E F L E C T I O N  O F  A S H O C K  W A V E  F R O M  A W A L L  

W I T H  A B E N D  

S. V. Voshchin UDC 533.6 

This article examines the problem of disturbance of the nonsteady regular reflection of a shock wave. A disturbance 

is introduced into the main flow when the configuration comprised of the incident and reflected shock waves reach a bend in 

the wall. The problem is solved within the class of self-similar solutions. In a linear formulation, the perturbation problem 

reduces to a contact problem involving analytic functions. It is shown that the perturbation problem can be solved if the 

reflected shock is weak and very stable. The follows from the unchanging character of the flow. An analytic solution in integral 

form is obtained in this case. The contact problem cannot be solved if the reflected shock is strong, which indicates that the 

flow has undergone a fundamental restructuring. 

1. Formulation of  the Problem. Well will study a nonsteady gas flow created with the reflection of a shock wave from 

a wall with a band (Fig. 1). We introduce the cartesian coordinate system (X, Y), the center of which lies at the point of 

inflection. Let us suppose that at t < 0 a configuration comprised of the incident and reflected shock waves moves along the 

wall (Y = 0) through the quiescent gas at a velocity U. The main parameters of the flow in the regions ahead of  and behind 

the incident shock front and behind the reflected front will be designated by the subscripts 0, 1, and 2, respectively. Let the 

incident shock front 1,1 be given by the equation 

X + b Y +  Ut = 0 (b = const, U = const, b > 0, U > 0), 

and let the reflected from 1' 2 be given by the equation 

X -  a Y +  Ut = 0 (a = const, a > 0). 

The gas flow is steady in the coordinate system connected with the point of intersection of the fronts N. The parameters 

of the flow in regions 0, 1, and 2 are connected by the relations for an oblique shock wave: 

r (Wi_l.n) = ~i_l(W~.ni), 

Pi-I  q" P i - l ( W i - l ' n i )  2 = Pi + Pi (Wi ' n i )  2, 

Wi_ l - (Wi_l.n)n i = W i - (Wi.ni)ni, 

1 1 
h,_, + ~ (W,_ , -n , )  2 = hi + 2 ( W " n ' ) '  (i = 1, 2). 

Here, Pj is pressure; Pi is density; 7" i = pi ' l ;  h i is enthalpy; n i is a normal to the front ri;  w i is a vector connected with the 

velocity vector of the gas V i ----- (uivi) in regions 0, 1, 2 by the relation W i = V i + (U, 0). By virtue of  the impermeability 
condition, v 2 = 0 on the wall Y = 0. 

At the time t = 0 let point N reach the coordinate origin, where the rigid wall is bent through the small angle e(e > 

0). The front of  the reflected wave curves at t > 0 and one of two regions of disturbed flow is formed. In case (a), when u 2 + 

c 2 > 0, the region is bounded by the rigid wall, a section of the diffracted front of  the reflected wave 1" 2, and the characteristic 
surface 1"3 moving at the speed of sound: 

( X -  u2t) 2 + k a = c~t 2 
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(u 2 < 0 is the horizontal component of velocity; c 2 is the speed of sound in region 2). In case (b), when u 2 + c 2 < 0, the 

region of disturbed flow is bounded by a segment of the rectilinear acoustic characteristic B'G, part of the acoustic circle GC, 

a section of the diffracted from r 2, and the rigid wall (Fig. 2). The characteristic B'G originates from the point of inflection 
and contacts the acoustic circle r 3 at point G. Case b is depicted by the dashed lines in Fig. 2. 

Description of the flow at t > 0 reduces to solution of the equations of gas dynamics 

d d 1 d dP 
7 t P + p d i v V = 0 , ~ t t V + 7  v e = 0 ,  - ' ~ t t S = O , p = p ( P , S )  (c2=-~p)  (1.1) 

in the region of disturbed flow if the impermeability condition is satisfied on the wall and the Hugoniot condition is satisfied 

on the unknown boundary NC. Here, P is pressure; p is density; V is velocity; S is entropy; c is the speed of sound; 

d a 
e_ + V . V .  

dt #t 

Considering that e < < 1, we linearize the problem to obtain a piecewise-constant solution for P2, a2, V2, and S 2 that 
describes the gas flow when e = 0. We represent the flow parameters in the form 

P = P2 + eP2~Pj, s = s 2 ( 1  + %), 
(I .2) 

V = V 2 + tq(u~,t~), p = P2(1 + ep~), 

where pj, pj, (uj, vj), sj are dimensionless perturbations of the flow parameters. In case (b), the region in which the linear 
perturbation problem is solved breaks down into two subregions: subregion 3, the right boundary of which is the acoustic circle 

I'3; subregion 4, bounded by the acoustic circle r 3, the rigid wall, and the segment B'G (Fig. 2). 'In a linear formulation, the 

segment B'G can be regarded as a first-order discontinuity modeling the change in the flow in a wave centralized at the point 
of inflection. Accordingly, j = 3, 4 in (1.2). In case (a), j = 3. The given problem is self-similar, making it is convenient to 

introduce the following independent variables: 

a~'-~., ~ '+,r  ( ~) 
= = - - - -  , = . ( l . 3 )  

qt 

The solution is constant in region 4 and the quantities P4, (u4, v4),/)4 and s 4 are determined from the relations for a first-order 
discontinuity. To determine the perturbations P3, (u3, v3), P3 in region 3, we need to solve the following system of equations 

(the 3 subscript will henceforth be omitted) 

Op Op = Ou Ou Ou Ou Op Ov Ou Op Os as 
~.~+ ~/~ ~-~ + ~-~, ~-+I/~=~'~, ~-~+~/0~-o,7' ~+~/~-~= 0, (1.4) 

which is obtained from system (1.1) after linearization and a changeover to new self-similar variables (1.3). 

Since the last equation of the system can be integrated independently using the boundary conditions on the shock from 

and the acoustic circle, we will subsequently focus our attention on a system consisting of the first three equations. 

Let us formulate the boundary conditions of the linear problem. The equation of the straight part of the front of the 

reflected shock wave takes the form 
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~ = u2 "t" U l M 
c~ r  r + l - - - -  m .  

We will study regimes of gas motion in which the Mach number M < 1 (the case M > 1 was described in detail in 

[1]). The equation of the disturbed part of the front of the reflected shock wave will be represented as ~ = m + e,It~7). The 

linearized Hugoniot relations give the following boundary conditions at ~ = m: 

(l - R)M 2M(l - R -*) (~ (r / )  - ~ / ~ ) ,  t, = ~ ~+,  u = 
P = v T V - ~ ( %  + 1) 

After removing ~(r/) and ~n(r/) from (1.5) we obtain 

av ~.o 
u = A p ,  r t ~  = B ~ q ,  

(1 --  A2)41  + a 2 

2M P" 
(1.5) 

(1.6) 

where 

(1 - A 2 ) _ _ ,  - - , ( A 2  + I)R _ P2 - Pt / o~r' 2; [ ) _ P2 
A - 2m B - 2 A2 R 

r l r 2 ~ P l "  

Relations (1.6) are satisfied on the straight line ~ = m (see Fig. 2). The front of weak disturbances originating from 
the vertex of the angle is described by the equation ~2 + r/2 = 1. 

Thus, the mathematical formulation of the problem is such as to require solution of Eqs. (1.4) with the following 

boundary conditions: on the boundary 71' = 0 

= ~' < - L ,  --ta 2 t f  M when ~ '  
- L = - - ~  < I 

C 2 ' O' 0 when > - - L ,  

- t t  2 
- L = - - >  1, v' = M 

r 

(v' is the projection of the velocity vector on the axis Or/'); Eqs. (1.6) are valid on the boundary ~ = m in both cases, u = 

v = p = 0 on the acoustic characteristic I" 3 in case (a), and 

= o = p = 0 t h o a r c c a ) ,  

ML 
in case (b) ~ (u, v - (u, v are assigned constants 

which are nontrivial on the 
arc GB) 

2. Boundary-Value Problem for Pressure. We obtain the following equation for p after excluding u and v from Eqs. 

(1.4) 

/0+ + )(+ +) +r/T~'~ + 1 ~T(+~7"~'~ =V2P, (2.1) 

which will be hyperbolic at ~2 + r/2 > 1 and elliptic at ~2 + ~ < 1. By virtue of Eqs. (1.4), the condition on the axis r/' 

= 0 is written in the form 

op 
8,i' - M ~ o ( ~ '  + L )  in case Ca) 

8p 
a,t' - 0 in ease (b) 

(~0(~) is the delta function). The below condition follows from Eqs. (1.4) and (1.6) for the section ~ = m 

(.+ ++)+( m m ' f f + r t  = ~ -  A t / -  , I ]+,I" 
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On the boundary between the regions of uniform and disturbed flow ~2 + 7/2 = 1 we have 

Op 
--  0 in case (a), 

as 

Op M L  
O s  - -  ~ c)~ -- Oa) in case (b). 

Here, s is a tangent vector to F 3 directed counterclockwise; 0 is a polar angle in the plane (~, 7). Along the line AC, integral 

conditions describing the change in velocity v along AC from v N to zero must be satisfied 

B 
f -~ dp = -vN, (2.2) 
Ar 

as well as integral conditions describing the change in pressure 

P~ - p,, 
f dp - ' 2 - -  - -Pu (2.3) 
AC P2C2 

(PN is pressure at the point N). The value of PN is calculated from the theory of  regular reflection [1, 2]. We perform this 

calculation using Eqs. (1.5), the condition at point A au - v = MwCl + a 2, and the condition for passage of  the reflected front 

through point N (see Fig. 2), Thus 

a-,0 + ~ I 2m(l - g)  V (a + ctg a )  + I "-- R- "J 
P~v = a2(l - A2 ) _ R(I + A2) 

Then we write vlq from the second relation of Eqs. (1.5) as 

a ( l  - A2)P~ r - 2m2(1 + a 2) 

O~ = 2 m  

(o~ is the angle of incidence of  the front F1). 

3. Transformation of  the Linearized Problem. By resorting to the successive transformations 

1 - , f f ' [ " ~  01 0 = �9 0, r/ = �9 0, r I = , = 

we reduce Eq. (2.1) to the Laplace equation 

~2p 1 0 p  1 02p 

i +  + - - -  + = o .  ( 3 . 1 )  �9 I ar!  

Here, region ABC in the plane (~, 7) becomes curvilinear triangle ABC in the plane (x = r I cos 0, y = r I sin 0). If we 

introduce vectors n, and s, respectively normal and tangent (in the counterclockwise direction) to the arc AC, the condition 

for the diffracted front takes the form 

#p 

On A m t g  0 - B c t g  0 
f2(O). 

a._~p (I  - m2sec20) ~ 

#s 

(3.2) 

Using a series of  elementary conformal transformations 

( x  + ay) ( a x -  y) +, - I z I - /~ 
x , = - ~ , Y l -  ~ a , Z 2 = - - - -  

p t - -  l Z l - - V  

m + , 

h = z~ ]p ( t g p  = ~/I - M2ig r - ~ l  - M~, 
a 
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.y being the angle of reflection of the front F 2, 

z 3 - i 

z 4 -  iz 3 - l 

1 z 1 (~ = ,~ + ~),  

we map triangle ABC onto the upper half-plane so that the section AC becomes part of  the real axis - 1 < X < 0 (Fig. 3), 

section AB becomes part of  the real axis 0 < X < 1, and section CB becomes I X I > 1, ~ = 0. In case (a), the point with 

the coordinates ( - L ,  0) from the plane (~',  7/') changes into the point 

2/l v -  I t - #  f f l -  L 2 - 1 
'~o -" 1 + ~'  l l  -- - - '  / * - 1  l - v  l -  L 

~/L~'-'5-i_ 1 
In case (b), point G with the coordinates ( _ 1 , _  L ) in the plane (~',  ~7') becomes point X G on the section [ X [ > 1. 

The perturbation problem is then formulated as follows. It is necessary to f'md a solution to Laplace equations (3.1) in the upper 

half-plane that satisfies the following conditions: 

on the section CA Or = 0, - 1 <  X < 0) 

on the section AB Or = 0, 0 < X < 1) 

op op 
0~ + f~(0( , l ) )  - f f  = 0 ,  

op LM 
0o -- ~ t~0Ql - 20) in case (a), 

Op 
= 0 in case (b). 

on the section CB (a = 0, I X I  > 1) 
op 
0,l -- 0 in case (a), 

op LM 
a~ - ~ aoO" - ao)  i .  ~ Co). 

4.  F o r m u l a t i o n  o f  a Riemann- I - I i l be r t  Problem.  Solvability Condition.  We introduce the analytic function A(D 

= p~ + iPx and we formulate a Riemann-Hi lber t  problem for it. We need to find a function A(D = p~ + ip• which is 

analytic in the upper half-plane and continuous on tr = 0, satisfying the following linear relation on the contour 

q(]t)l,, - d(A)p a = e(2). 

The functions q(X), d(X) are discontinuous at points A and B. On the section - 1 < X < 0 

q = (1 - m2sec~O)t~tgO, d = (B  - Amtg20) ,  e = 0 (0 = O(;t)), 

on the section 0 < X < 1 

q =  l , d =  O, 

in ease (a), 

in ease (b). 

on the section I X I  < 1 

q = O , d = l ,  
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O_ in ease (a), 

e ---- L M  
~ 0 ( 2  - -  2 G )  in ease  (b),  

We reduce the Riemann-Hi lber t  problem to a standard inhomogeneous contact problem on the real axis. Let A + = Pa + iPk, 
~" E S + (where S + represents the upper half-plane), A'(D = A+(D,  ~" E S- (S- being the lower half-plane). We obtain the 

following contact problem from the conditions of the Riemann-Hi lber t  problem: 

a+(a) = aft)A-Ca) + gCa) o. o = o. 
(4.1) 

q -  id  2e 
Here, G(A)=- gQ) 

o + i d '  q + id" 

In accordance with [3], the following classification of reflection regimes is obtained at M < 1 

2 
a - R 

1) - - 1  < A a < a2 + R a h igh ly  stable s t rong  ref lected shock;  

a 2 - R I - m 2 - R m  2 
- -  < A 2 < 

2) ~T+ R I - m 2 + :Rm 2 
a h igh ly  stable w e a k  ref lected shock;  

1 - m z -  R . m  2 

3 )  1 - m l + R # I  2 < ~ < I + 2m �9 

It is found in calculating the index of problem (4.1) that arg G(X) does not change on the sections I ), I > 1 and 0 

< )~ < 1. On the s e c t i o n -  1 < ), < 0 we have 

< Aal'g G(2) < 4~ ,for regime t, 

< ~ Cr(~l) < 301:. for regime 2, 

0 < ~ Cr < ~ for regime 3. ' 

Choosing the jumps of  the argument GO,) at points A and B in accordance with [4] (boundedness is automatic at point 

C), we obtain the indices for solutions of problem (4.1) that are automatically bounded at point C and integrable (finite) at 

points A and B, as well as being bounded at infinity (x = 3(1) for regime 1, x = 2(0) for regime 2, x = 1 ( -  1) for regime 3). 

The pressure boundedness condition means that 

A(:;) -, o,  ~ -* = ,  ~^r -- o ,  ~; -,. =. (4.2) 

To satisfy conditions (2.2), (2.3) and (4.2), we need to choose a solution of problem (4.1) that depends on four real 

constants. This can be done only when x = 3, which corresponds to regime 1. Regimes 2 and 3 turn out to be indeterminate. 

In accordance with [4], the solution of the problem is given by the expressions 

= 2=i'o,+-i.*~t--~)+*(~)(e~162 J + c,[~--~) ). (4.3) 
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~(t;)  = 

f~+ '/ 
~ - 5 )  expr(~) at ~ ~ S-, 

r + i "f I. ~o(Oat Go(t ) = |7"71(t + fi" r(r  G( t), 
~'~'  -,11 ( ,  ,ip , ) ( ,  _ ~) '  ~ ,  -- , )  

- -~o ( t  2/'M - 2o) in case (a), 

KO = 2LMi 
d~a( 1 /  ~'0) in case (b). X 3. 

5. D e t e r ~ a a f i o n  of  the Constants co, c 1, c a, r Umqueness of the Solution. It follows from the representation (4.3) 

of  the solution that 

~  �9 

p,(R,o) = Im s + colin *(~) + ctIm c}'(r 7---7~, .. + qlm *(r + c31m c}(r , 

where 

F(~) ~ =~ ~ + i * g(t)dt 
= 2.rti J| $ i  ~ (t)(t - r 

Then conditions (2.2), (2.3) and (4.2) take the form 

% 
Cdo + c!Z, + c/~ + c/3 = ~- - 6, 

c~ + ct16 + c217 + c3[s = PN -- 19, 
C o + q + c 2 + q = 0 ,  

3 % +  q -  %- -  3c 3 =  0. 

Here, 

I m  

o 

- i  
,1(x) 

-1  -1  

3 

Im *(~) 
0 

aa; z~ = f ,~(~) a,l; 
- 1  

Ira pg) , 0 
14 = ~ d a ;  1 s = f Im (:I:)(~)&l; 

- 1  - ] .  

2 

, o ,m { ~ ( )"; 
3 

I 8 = Im 0(~) &1; /9 = f In] F(~)dA. 
- I  - I  

Tile constants Co, Cl, c2, and c 3 are determined as 

J = det 1516 /7 
I I 

I - I  

~0.  
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We will show that this condition is satisfied. Let the above determinant be equal to zero and let f~ and f2 be nontrivial 

solutions of problem (4.1), (2.2), (2.3), (4.2). We will examine f = fl - F2- For the pressure p corresponding to solution f, 

conditions (2.2) and (2.3) take the form 

f p~d~ = 0; (5.1) 
AC 

pada 
f = o. (5.2) 
AC 

Conditions (4.2) remain unchanged. By virtue of the Zarembo-Gero lemma, the minimum and maximum of pressure 
p cannot be reached on section AB (see Fig. 2) because 0p/an = 0, on section BC because ap/Os = 0, or on section AC 
because of condition (3.2). The only exception is point D, where # = 0. Inside the region, Ap = 0. Thus, extrema can be 

reached only at points A, B, C, and D. If a minimum is reached at point A, then in accordance with condition (5.1) PA = PB 

= PC- A maximum is reached only at point D (PD = P*). Integrating condition (5.2) by parts, we obtain 

p -  p .  P - p .  . f P  - p .  
- + ------y---dr/ = 0 

. ( a )  A c . 

Here, all three terms are of the same sign, so that p - p. = O. Thus, min p = max p, which means that p = const 
and f = 0. Then contact problem (4.1) is unambiguously solvable within the chosen class of functions and J ;~ 0. 

The solvability of the above-formulated boundary-value problem therefore depends on the type of reflected shock wave. 

If the latter is weak and highly stable, there will be no change in the character of the flow, i.e., the reflected shock will be 
distorted and the perturbation problem will have a solution. The given self-similar perturbation problem cannot be solved in 
other cases, which indicates that the flow undergoes a fundamental restructuring. 

An analysis of solution (4.3) reveals that it has a logarithmic singularity at the point of inflection. This shows the 

inappropriateness of using a linear approximation in a small neighborhood of the point and the need for a separate detailed study 
of the behavior of the solution near this point. A full investigation of this matter is beyond the scope of the present study. 

The authors of [3] reached similar conclusions in a study of nonsteady non-self-similar perturbations of a steady flow 

created with the regular reflection of an oblique shock from a rigid wall. An analysis of the equations of the transonic 

approximation led the authors of [5] to also conclude that the perturbation problem could not be solved for a strong shock wave. 

We are sincerely grateful to Professor V~ M. Teshukov for his help in the study and for discussing the results with 
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